Testing Composite Hypotheses via Convex Duality ∗

نویسندگان

  • Birgit Rudloff
  • Ioannis Karatzas
چکیده

We study the problem of testing composite hypotheses versus composite alternatives, using a convex duality approach. In contrast to classical results obtained by Krafft & Witting [11], where sufficient optimality conditions are obtained via Lagrange duality, we obtain necessary and sufficient optimality conditions via Fenchel duality under some compactness assumptions. This approach also differs from the methodology developed in Cvitanić & Karatzas [6].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Neyman-pearson Lemma via Convex Duality

We extend the classical Neyman-Pearson theory for testing composite hypotheses versus composite alternatives, using a convex duality approach as in Witting (1985). Results of Aubin & Ekeland (1984) from non-smooth convex analysis are employed, along with a theorem of Komlós (1967), in order to establish the existence of a max-min optimal test in considerable generality, and to investigate its p...

متن کامل

Generalized Neyman - Pearson Lemma

We extend the classical Neyman-Pearson theory for testing composite hypotheses versus composite alternatives, using a convex duality approach as in Witting (1985). Results of Aubin & Ekeland (1984) from non-smooth convex analysis are employed, along with a theorem of Komll os (1967), in order to establish the existence of a max-min optimal test and to investigate its properties. The theory is i...

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

Comment on “ Hypothesis testing by convex optimization ” ∗

With the growing size of problems at hand, convexity has become preponderant in modern statistics. Indeed, convex relaxations of NP-hard problems have been successfully employed in a variety of statistical problems such as classification [2, 16], linear regression [7, 5], matrix estimation [8, 12], graphical models [15, 9] or sparse principal component analysis (PCA) [10, 4]. The paper “Hypothe...

متن کامل

Duality for location problems with unbounded unit balls

Given an optimization problem with a composite of a convex and componentwise increasing function with a convex vector function as objective function, by means of the conjugacy approach based on the perturbation theory, we determine a dual to it. Necessary and sufficient optimality conditions are derived using strong duality. Furthermore, as special case of this problem, we consider a location p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008